Fractional hydrodynamic equations for fractal media
نویسندگان
چکیده
منابع مشابه
Fractional hydrodynamic equations for fractal media
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the ‘‘fractional’’ continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier–Stokes and Euler equations are considered. We derive the eq...
متن کاملFractional Ginzburg–Landau equation for fractal media
We derive the fractional generalization of the Ginzburg–Landau equation from the variational Euler–Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg–Landau equation for fractal media are considered and different forms of the fractional Ginzburg–Landau equatio...
متن کاملFractional Fokker-Planck equation for fractal media.
We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...
متن کاملFractal Index Method for Solving Generalized Fractional Riccati Differentional Equations
In this paper, we applied a new analytical geometrical method which so called fractal index method to find a new solution of the generalized fractional Riccati equation of arbitrary order, we also wrote the solution on the closed form as an infinte series and showed that the series is convergent within some closed disk. The fractional operators are taken in sense of the Riemann-Liouville operat...
متن کاملA Fractional Calculus Approach to the Mechanics of Fractal Media
Based on the experimental observation of the size effects on the structural behavior of heterogeneous material specimens, the fractal features of the microstructure of such materials is rationally described. Once the fractal geometry of the microstructure is set, we can define the quantities characterizing the failure process of a disordered material (i.e. a fractal medium). These quantities sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2005
ISSN: 0003-4916
DOI: 10.1016/j.aop.2005.01.004